Phase transfer catalysts drive diverse organic solvent solubility of single-walled carbon nanotubes helically wrapped by ionic, semiconducting polymers.

نویسندگان

  • Pravas Deria
  • Louise E Sinks
  • Tae-Hong Park
  • Diana M Tomezsko
  • Matthew J Brukman
  • Dawn A Bonnell
  • Michael J Therien
چکیده

Use of phase transfer catalysts such as 18-crown-6 enables ionic, linear conjugated poly[2,6-{1,5-bis(3-propoxysulfonicacidsodiumsalt)}naphthylene]ethynylene (PNES) to efficiently disperse single-walled carbon nanotubes (SWNTs) in multiple organic solvents under standard ultrasonication methods. Steady-state electronic absorption spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) reveal that these SWNT suspensions are composed almost exclusively of individualized tubes. High-resolution TEM and AFM data show that the interaction of PNES with SWNTs in both protic and aprotic organic solvents provides a self-assembled superstructure in which a PNES monolayer helically wraps the nanotube surface with periodic and constant morphology (observed helical pitch length = 10 ± 2 nm); time-dependent examination of these suspensions indicates that these structures persist in solution over periods that span at least several months. Pump-probe transient absorption spectroscopy reveals that the excited state lifetimes and exciton binding energies of these well-defined nanotube-semiconducting polymer hybrid structures remain unchanged relative to analogous benchmark data acquired previously for standard sodium dodecylsulfate (SDS)-SWNT suspensions, regardless of solvent. These results demonstrate that the use of phase transfer catalysts with ionic semiconducting polymers that helically wrap SWNTs provide well-defined structures that solubulize SWNTs in a wide range of organic solvents while preserving critical nanotube semiconducting and conducting properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The electrolyte switchable solubility of multi-walled carbon nanotube/ionic liquid (MWCNT/IL) hybrids.

In this communication we report the first preparation of ionic liquid-modified carbon nanotubes with reversibly switchable solubility between aqueous and organic solvents, induced by anion exchange.

متن کامل

Excited-State Interaction of Semiconducting Single-Walled Carbon Nanotubes with Their Wrapping Polymers

We employ photoluminescence and pump-probe spectroscopy on films of semiconducting single-walled carbon nanotubes (CNTs) of different chirality wrapped with either a wide band gap polyfluorene derivative (PF12) or a polythiophene with narrower gap (P3DDT) to elucidate the excited states' interplay between the two materials. Excitation above the polymer band gap gives way to an ultrafast electro...

متن کامل

Influence of structure-selective fluorene-based polymer wrapping on optical transitions of single-wall carbon nanotubes.

To understand how fluorene-based polymers selectively extract specific semiconducting single-wall carbon nanotubes (SWCNTs), we compared the optical transitions of SWCNTs wrapped with poly(9,9-dioctylfluorene-alt-pyridine) (PFOPy), i.e., structure-selective polymers, with those wrapped with poly(9,9-di-n-dodecylfluorene) (PFD), i.e., non-selective polymers, in organic solvents by using photolum...

متن کامل

Towards Efficient Carbon-Based Solar Cells

Our work in the last year focused on improving the sorting of semiconducting carbon nanotubes and the enhancement of the conductivity and transparency of carbon based electrodes. The active layer of our carbon solar cell is based on semiconducting single-walled carbon nanotubes; the highly selective sorting of small diameter carbon nanotube is essential for photovoltaic applications. Ideally, t...

متن کامل

Redox sorting of carbon nanotubes.

This work expands the redox chemistry of single-wall carbon nanotubes (SWCNTs) by investigating its role in a number of SWCNT sorting processes. Using a polyethylene glycol (PEG)/dextran (DX) aqueous two-phase system, we show that electron-transfer between redox molecules and SWCNTs triggers reorganization of the surfactant coating layer, leading to strong modulation of nanotube partition in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 10 10  شماره 

صفحات  -

تاریخ انتشار 2010